مطالعه تطبیقی روش های خطی arima و غیر خطی شبکه های عصبی فازی در پیش بینی تقاضای اشتراک گاز شهری

نویسندگان

محمد حسین پور کاظمی

امیر افسر

بیژن نهاوندی

چکیده

اطلاع از میزان تقاضای موجود در هر دوره یکی از مباحثی است که شرکت ملی گاز در راه پاسخگویی به مراجعان به آن نیاز دارد.عدم اطلاع از میزان تقاضای اشتراک سبب ایجاد مشکلاتی مانند عدم آگاهی از تعداد پیمانکاران مورد نیاز و همچنین فقدان برنامه کنترل موجودی مناسب برای انواع کنتورهای موردنیاز و دیگر عوامل مرتبط می شود. در چند دهه گذشته،اقتصاددانان و علمای مدیریت برای براورد تقاضا غالباً از روش های اقتصادسنجی استفاده کرده اند. امروزه از بین روش های پیش بینی، شبکه های عصبی مصنوعی و مدل های فازی در بسیاری از زمینه های کاربردی استفاده شده اند که هر کدام از آنها دارای محاسن و معایبی هستند. بنابراین،ترکیب موفقیت آمیز این دو روش، مدل سازی شبکه های عصبی مصنوعی و فازی،با اتکا به ترکیب قدرت یادگیری شبکه های عصبی و عملکرد منطقی سیستم های فازی تبدیل به ابزار بسیار قدرتمندی شده که هم اکنون کاربرد های گوناگونی دارند. در این تحقیق، تقاضای اشتراک گاز شهری خانگی شهر تهران با استفاده از روش خطی arima و روش غیر خطی شبکه ها ی غیر عصبی فازی بررسی شده و از لحاظ شش معیار ارزیابی عملکرد با یکدیگر مقایسه شده اند.ناتیج تحقیق بیانگر این حقیقت است که برای پیش بینی تقاضای اشتراک گاز شهری، شبکه های عصبی فازی در تمامی شش معیار ارزیابی عملکرد، بر روش arima برتری داشته، بنابراین مناسبتر است. طبقه بندی jrl:c53,c32,c13.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مطالعه تطبیقی روش های خطی ARIMA و غیر خطی شبکه های عصبی فازی در پیش بینی تقاضای اشتراک گاز شهری

اطلاع از میزان تقاضای موجود در هر دوره یکی از مباحثی است که شرکت ملی گاز در راه پاسخگویی به مراجعان به آن نیاز دارد.عدم اطلاع از میزان تقاضای اشتراک سبب ایجاد مشکلاتی مانند عدم آگاهی از تعداد پیمانکاران مورد نیاز و همچنین فقدان برنامه کنترل موجودی مناسب برای انواع کنتورهای موردنیاز و دیگر عوامل مرتبط می شود. در چند دهه گذشته،اقتصاددانان و علمای مدیریت برای براورد تقاضا غالباً از روش های اقتصادس...

متن کامل

پیش بینی منابع مالی بانک با استفاده از مدل خطی( ARIMA) و غیرخطی شبکه های عصبی مصنوعی فازی

یکی از مهم‌ترین موارد مورد علاقه مدیران بانکی به عنوان متغیری تأثیرگذار بر صنعت بانکداری، اطلاع از وضعیت سپرده‌های بانکی است که فعالیت بانک تا حد زیادی بستگی به آن دارد. ازاین‌رو مدیران بانک‌ها علاقه‌مند هستند بدانند که میزان کل سپرده‌های بانک در زمان معینی در آینده چقدر خواهد بود. پیش‌بینی میزان سپرده‌ها، تغییر و نوسان این سپرده­ها می‌تواند در امر برنامه­ریزی و تصمیم­گیری به بانک‌ها کمک نماید....

متن کامل

مطالعه تطبیقی روش های ARIMA و شبکه های عصبی مصنوعی در پیش بینی نیاز داخلی برق کشور

  آگاهی از میزان تقاضای انرژی برق در هر دوره، به منظور برنامه ریزی دقیق، برای اعمال سیاست گذاری های لازم، امری ضروری است. از این رو پیش بینی تقاضای آن برای بخش های مختلف اقتصادی حائز اهمیت است. امروزه از بین روش های پیش بینی، شبکه های عصبی مصنوعی، در زمینه تجزیه و تحلیل و مدل سازی روابط غیرخطی یکی از ابزار قدرتمند به حساب می آید که استفاده از آن در سال های اخیر در اقتصاد کلان گسترش یافته است...

متن کامل

ساختارهای خطی و غیر خطی در پیش بینی بازده سهام

  پیش بینی بازده سهام به کمک کشف الگوهای رفتاری فرآیند مولد قیمت سهام امکان پذیر است. میزان موفقیت درکشف اینگونه الگوهای رفتاری، میزان کارایی پیش بینی را مشخص می کند. به عبارت دیگر فرآیند مولد قیمت سهام را می توان به عنوان یک الگوی دینامیکی بررسی کرد. این فرآیند ممکن است به صورت مدل های خطی، مدل های غیر خطی و یا مدل های تصادفی به دست آید. این پژوهش ساختارهای خطی پیش بینی کننده را در قالب دو مدل...

متن کامل

واکاوی کارایی روش های مبتنی بر شبکه های عصبی مصنوعی و رگرسیون خطی چندمتغیره در پیش بینی کشند

پیش‌بینی تغییرات کشند، به‌دلیل اهمیتی که در برنامه‌ریزی‌های ناوگان دریایی و نظامی، حمل و نقل و کشتیرانی، طراحی بنادر و سایر مسایل مرتبط با امور دریا دارد؛ از دیرباز مورد توجه بوده است. هدف این مطالعه بررسی عملکرد مدل‌های شبکه‌های عصبی پیش‌خور با 3 الگوریتم یادگیری کاهش شیب، شیب مزدوج و لونبرگ-مارکوارد در پیش‌بینی ساعتی تغییرات کشند است. به‌علاوه در تحقیق حاضر، نتایج حاصل از مدل رگرسیون خطی چندم...

متن کامل

کاربرد شبکه های عصبی در پیش بینی فرایندهای تجاری و مدیریتی و مقایسه با مدل های غیر خطی مطالعه موردی: صنعت چوب ایران

ماهیت روابط تشریح کننده بسیاری از فرایندهای واقعی زندگی به ویژه در حوزه های تجاری و مدیریتی اغلب غیر خطی هستند. لذا پیش بینی رفتار چنین فرایندهایی نیازمند ابزارهای دقیق و اثر بخش است. شبکه های عصبی مصنوعی قادرند به عنوان یک ابزار مهم مدل سازی در پیش بینی مسائل کسب و کار، نقایص مدل های معمول را جبران نمایند. هدف مقاله حاضر نشان دادن برتری شبکه های عصبی در پیش بینی فرایند های غیر خطی در مقایسه با...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
مجله تحقیقات اقتصادی

ناشر: دانشکده اقتصاد- دانشگاه تهران

ISSN 0039-8969

دوره 40

شماره 4 2006

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023